Figure 3 gives the fields of flow past a combination of two spheres and a cylinder, at $M_{\infty}=0.8$, for various values of the aspect ratio. Evolution of the flow is well illustrated. On Fig. 3a the body is nearly spherical and a single supersonic zone appears in its vicinity. On increasing the length of the cylinder (Fig. 3b) the supersonic zone splits into two distinct zones, the second of which is situated downstream and contains a stronger shock than the first one, although the shock is still weaker than that appearing in Fig. 3a. Figure 3c depicts the case when the cylindrical part of the body is still longer. Here two weak supersonic zones appear which are spaced even further apart.
Figure 4 shows a flow past a combination of two spheres and a 10% cone, again at $M_{\infty}=0.8$. Here the supersonic zone is situated at the rear part of the body. The flow first accelerates on the front sphere reaching $M \approx 0.8$, then slows down to $M \approx 0.66$ and flows past the cone with very slowly increasing velocity.
Computations are also performed for a flow past a 10% spherically truncated cone with various ellipsoidal tailpieces. The distribution of parameters along the body up to some small distance from the point of attachment of the ellipsoid are practically identical with those of the case shown on Fig. 4.

BIBLIOGRAPHY

1. Chushkin, P. I., A study of some gas flows at sonic speed. PMM Vol, 21. N®3, 1957.
2. Kireev, V.I., Lifshits, Iu. B. and Mikhailov, Iu.Ia., On solution of the direct problem of the Laval nozzle, Uch. Zap. TsAGI, Vol. 1, N81, 1970.
3. Babenko,K. I., Voskresenskii, G. P., Liubimov, A. N. and Rusanov, V. B., Spatial Flows of Perfect Gas Past Smooth Bodies. M, "Nauka", 1964.
4. Riaben'kii, V. S., Necessary and sufficient conditions for good definition of boundary value problems for systems of ordinary difference equations. J. U.S.S.R.Computational Mathematics and Mathematical physics, Vol. 4, №2, Pergamon Press, 1964.
5. Safonov, I. D., A double sweep method for the solution of difference boundary value problems. J. U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 4, Ne2, Pergamon Press, 1964.

Translated by L. K.

NONSYMMETRIC MECHANICS OF TURBULENT FLOWS

PMM Vol. 34, N:3, 1970, pp. 514-525
V. N. NIKOLAEVSKII
(Moscow)
(Received June 5, 1969)

In [1] we proposed renouncing the hypothesis of a symmetric tensor of Reynolds stresses and an agitated fluid and introducing an equation of conservation of the moment of momentum. This equation turns out to be nontrivial if, for example, the pulsed momentum transfer through a flow cross section depends on the orientation of the cross section in space.

In the present paper we derive the equations of nonsymmetrical mechanics of turbu-
lent flows by converting from integral conservation laws (under the assumption that the micromotions are described by the Navier-Stokes equation). The phenomenological characteristics of the agitated fluid are introduced naturally as the average values (for the fluid mass element in question) of the corresponding microcharacteristics or their fluxes. The closing kinetic hypotheses on the internal kinetic moment (of the turbulent vortices) and pulsed momentum and moment-of-momentum transfer are formulated.

1. The laws of conservation of mass, momentum, and moment of momentum for the Euler volume V bounded by the surface S are of the form [2]

$$
\begin{gather*}
\int_{V} \frac{\partial \rho}{\partial t} d V+\int_{S} \rho u_{n} d S=0 \tag{1.1}\\
\int_{V} \frac{\partial\left(\rho u_{i}\right)}{\partial t} d V+\int_{S} \rho u_{i} u_{n} d S=\int_{V} \rho F_{i} d V+\int_{S} t_{i n} d S \tag{1.2}\\
\int_{V} \frac{\partial}{\partial t}\left(\varepsilon_{i j k} \rho u_{j} x_{k}\right) d V+\int_{\dot{S}} \varepsilon_{i j k} \rho u_{j} x_{k} u_{n} d S=\int_{V}\left(\rho G_{i}+\rho e_{i j k} x_{j} F_{k}\right) d V+ \\
+\int_{S}\left(c_{i n}+\varepsilon_{i j k} x_{j} t_{k n}\right) d S \tag{1.3}
\end{gather*}
$$

Here ρ is the density of the fluid particle, u_{i} is its velocity, F_{i} is the body force, $t_{i j}$ is the stress tensor, $\mathrm{x}\left(x_{k}\right)$ is the radius vector of the fluid particle, G_{i} is the body moment, $c_{i j}$ are the moment stresses, and $\varepsilon_{i / k}$ is the Levi-Civita alternating tensor. The subscript n identifies components lying along the normal to the surface element $d S$.

The interpretation of the dynamic quantities occurring in the integrands of (1.1)(1.3) depends on the chosen scales of the associated microvolumes $d V$, i. e. on the size of the fluid particles for which the quantities ρ, u_{i}, etc. are determined. If the motion of these particles is described by the Navier-Stokes equations and if the microvolumes $d V$ are sufficiently small, then

$$
\begin{gather*}
t_{i j} \equiv t_{j i}=\left(-p+\frac{2}{3} \rho v \frac{\partial u_{k}}{\partial x_{k}}\right) \delta_{i j}+\rho v\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{1.4}\\
G_{i}=0, \quad c_{i j}=0
\end{gather*}
$$

For simplicity we shall disregard the action of the body forces, assuming that $F_{i} \equiv 0$.
If we base our analysis on the consideration of several large fluid particles, then the balance of moments of momenta reduces to the vorticity diffusion equation, and the quantities $c_{i j}$, for example, are determined by molecular vorticity transfer (see [1]).

Let the volume V be filled with an agitated fluid, i.e. with fluid containing turbulent vortices which comprise a special (*) microstructure of a scale larger than the differential volume $d V=d x_{1} d x_{2} d x_{3}$. We assume that the linear scale of the turbulent vortices is somewhat smaller than the characteristic length Δ of the volume V, and that the density $\langle\rho\rangle$ and mass velocity U_{i} averaged over the volume V, namely

[^0]\[

$$
\begin{equation*}
\langle\rho\rangle=\frac{1}{V} \int_{V} \rho d V, \quad\langle\rho\rangle U_{i}=\left\langle\rho u_{i}\right\rangle=\frac{1}{V} \int_{V} \rho u_{i} d V \tag{1.5}
\end{equation*}
$$

\]

as well as the average quantities defined below, are no longer random parameters.
As usual, we refer the velocity U_{i} to the center of mass of the fluid filling the volume V, i.e. to the point with the radius vector $\mathbf{X}\left(X_{1}, X_{\mathbf{2}}, X_{\mathbf{n}}\right)$ defined as follows:

$$
\begin{equation*}
\langle\rho\rangle X_{i}=\frac{1}{V} \int_{V} \rho x_{i} d V, \quad \int_{V} \rho \xi_{i} d V=0 \tag{1.6}
\end{equation*}
$$

Here $\xi_{i}=x_{i}-X_{i}$ is the vector which defines the position of a point inside the volume V relative to the center of mass of the latter.

Let the field of average velocities $U_{i}\left(X_{j}, t\right)$ introduced above be such that the characteristic linear scale of the velocity gradient is of the same order as L. From now on we shall confine our attention to volumes V whose linear dimensions Δ are much smaller than L.

In the present paper we deal with motions of an agitated fluid such that the microparticle velocity $u_{i}\left(\xi_{j}, t\right)$ can be expressed as the sum of a regular and a nonregular component,

$$
\begin{equation*}
u_{i}\left(\xi_{j}, t\right)=\left(U_{i}+\frac{\partial U_{i}}{\partial X_{j}} \xi_{j}+O\left(\frac{\Delta^{2}}{L^{2}}\right)\right)+v_{i}\left(\xi_{j}, t\right) \tag{1.7}
\end{equation*}
$$

where v_{i} is the turbulent pulsation (the nonregular component) of the velocity, and $L \gg$ $\gg \Delta \geqslant \xi_{j} \geqslant 0$.
By (1.5)-(1.7) we have

$$
\int_{V} \rho v_{i} d V=0
$$

Further assumptions concerning the field $v_{i}\left(\xi_{j}, t\right)$ are formulated below.
2. Now let us suppose that our volume V is the macrovolume element

$$
V=\Delta X_{1} \Delta X_{2} \Delta X_{3}
$$

Equations (1.1)-(1.3) then become:

$$
\begin{gather*}
\frac{\partial\langle\rho\rangle}{\partial t}+\frac{\partial}{\partial X_{j}}\left\langle\rho u_{j}\right\rangle_{j}=0 \tag{2.1}\\
\frac{\partial\left\langle\rho u_{i}\right\rangle}{\partial t}+\frac{\partial}{\partial X_{j}}\left\langle\rho u_{i} u_{j}\right\rangle_{j}=\frac{\partial\left\langle t_{i j}\right\rangle_{j}}{\partial X_{j}} \tag{2.2}\\
\frac{\partial}{\partial t}\left\langle e_{i j k} \rho u_{j} x_{k}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle\varepsilon_{i l k} \rho u_{\mathrm{l}} x_{k} u_{j}\right\rangle_{j}=\frac{\partial}{\partial X_{j}}\left\langle\varepsilon_{i l k} t_{l j} x_{k}\right\rangle_{j} \tag{2.3}
\end{gather*}
$$

Here $\left\langle\varphi_{i j}\right\rangle_{j}$ denotes the result of averaging $\varphi_{i j}$ over an area whose normal is the axis X_{j}, i.e. over one of the faces of the volume V.

We have already used volume integration of equations valid for micromotions and introduced quantities averaged over volumes and surfaces for the analysis of the dynamics of heterogeneous media (for example, see our paper [3]). Eringen [4] investigated this approach in general and compared it with the micropolar elasticity and anisotropic fluid models.

Taking the vector product of Eq. (2.2) and \mathbf{X}, we obtain the balance of the moment of translational momentum,

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(\varepsilon_{i j k}\left\langle\rho u_{j}\right\rangle X_{k}\right)+\frac{\partial}{\partial X_{j}}\left(\varepsilon_{i l k}\left\langle\rho u_{l} u_{j}\right\rangle_{j} X_{k}\right)- \\
-\varepsilon_{i l k}\left\langle\rho u_{l} u_{k}\right\rangle_{k}=\frac{\partial}{\partial X_{j}}\left(\varepsilon_{i l k}\left\langle t_{l j}\right\rangle_{j} X_{k}\right)-\varepsilon_{i l k}\left\langle t_{i k}\right\rangle_{k} \tag{2.4}
\end{gather*}
$$

Subtracting relation (2.4) from Eq. (2.3), we obtain the equation of conservation of the internal moment of momentum for the volume element,

$$
\begin{gather*}
\frac{\partial}{\partial t}\left\langle\varepsilon_{i j k} \rho u_{j} \xi_{k}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle e_{i l k} \rho u \xi_{k} u_{j}\right\rangle_{j}+ \\
+\varepsilon_{i l k}\left\langle\rho u_{l} u_{k}\right\rangle_{k}=\frac{\partial}{\partial X_{j}}\left\langle\varepsilon_{i l k} t_{l j \xi_{k}}\right\rangle_{j}+\varepsilon_{i l k}\left\langle t_{l k}\right\rangle_{k} \tag{2.5}
\end{gather*}
$$

Let us replace the average characteristics and their fluxes in Eqs. (2,1), (2, 2), (2.5) by the phenomenological parameters of turbulent flow, i. e. by velocity U_{i}, the Reynolds stress tensor $\boldsymbol{R}_{j i}$, the viscous stress tensor $T_{i j}$, the internal moment of inertia $J_{i j}$, the internal rotational velocity of the turbulent vortices ω_{j}, and the moment stress tensor $\mu_{i j}$.

We begin with the assumption that the results of averaging the vector quantities over the volume V and over its faces are equivalent, i. e. that

$$
\begin{equation*}
\left\langle\rho u_{i}\right\rangle_{j}=\left\langle\rho u_{i}\right\rangle=\langle\rho\rangle U_{i}, \quad\left\langle\varepsilon_{i l_{k}} \rho u_{l} \xi_{k}\right\rangle_{j}=\left\langle\varepsilon_{i l k} \rho u_{l} \xi_{k}\right\rangle \tag{2.6}
\end{equation*}
$$

etc. This implies, among other things, the possibility of the transformation

$$
\begin{equation*}
\left\langle\rho u_{i} u_{j}\right\rangle_{j}=\langle\rho\rangle U_{i} U_{j}-R_{i j}+o\left(\frac{\Delta}{L}\right) \tag{2.7}
\end{equation*}
$$

which introduces the Reynolds stresses

$$
\begin{equation*}
R_{i j}=-\left\langle\rho v_{i} v_{j}\right\rangle_{j} \tag{2.8}
\end{equation*}
$$

into momentum equation (2.2).
It is important to note that the tensor $R_{i j}$ is generally nonsymmetric. The problem of the symmetry (or nonsymmetry) of the tensor $R_{i j}$ can be solved (as is usual in the mechanics of contiuous media) by analyzing the moment-of-momentum equation. We note that Reynolds distinguished between the components $R_{i j}$ and $R_{j i}$. in his original paper [5].

If we average the pulsation velocities v_{i} and v_{j} over time (as is done in measuring the microstructure of turbulent flows), the resultant tensor $v_{i} v_{j}$ is the correlation moment of the pulsed velocity field; in general it does not coincide with $\boldsymbol{R}_{\boldsymbol{i}}$.

Statistical averaging (over the ensemble of possible realizations)of the Navier-Stokes equations yields balance relations for the average fluid motion in a volume element of the scale $d x_{i}$ (but not $d X_{i}$). We note that the elements of the problem of statistical and volume averaging are presented in [6]. The form of the ergodic hypothesis (of the equivalence of all averaging methods) which is usually employed excludes the investigation of nonsymmetric effects.

Let us consider the average kinetic moment of an agitated fluid. We have

$$
\begin{gather*}
\left\langle\varepsilon_{i l k} \rho u_{l} \xi_{k}\right\rangle=\frac{1}{V} \int_{V} \varepsilon_{i l L_{k}} \rho u_{l} \xi_{k} d V= \\
=\varepsilon_{i l k} \frac{\partial U_{l}}{\partial X_{m}} \frac{1}{V} \int_{V} \rho \xi_{m} \xi_{k} d V+\frac{1}{V} \int_{V} \varepsilon_{i j k} \rho v_{j} \xi_{k} d V \tag{2.9}
\end{gather*}
$$

Further transformation require us to make additional assumptions about the pulsed
field v_{j}. We assume that the volume under consideration can be broken down into a set of small volumes ΔV with the characteristic scale $2 d$ such that in each of them we have

$$
\begin{equation*}
v_{j}\left(\xi_{m}, t\right)=w_{j}+\frac{\partial w_{j}}{\partial \bar{\xi}_{m}} \zeta_{m} \tag{2.10}
\end{equation*}
$$

where $d \geqslant \zeta_{m} \geqslant 0, \bar{\xi}_{m}=\xi_{m}-\zeta_{m}$ are the coordinates of the center of mass of the small volume ΔV and $w_{j}=v_{j}\left(\xi_{m}\right)$ is the velocity of this center of mass, i. e.

$$
\begin{aligned}
& \frac{1}{\Delta V} \int_{\Delta V} \rho v_{j} d V=\bar{\rho} w_{j}, \frac{1}{\Delta V} \int_{\Delta V} \rho \xi_{m} d V=\bar{\rho} \bar{\xi}_{m} \\
& \int_{\Delta V} \rho \xi_{m} d V=0, \quad \frac{1}{\Delta V} \int_{\Delta V} \rho d V=\bar{\rho}
\end{aligned}
$$

This enables us to express integrals (2.9) as sums over the volumes ΔV,

$$
\begin{gather*}
\left\langle\varepsilon_{i l k} \rho u_{l} \xi_{k}\right\rangle=\varepsilon_{i l k} \frac{\partial U_{l}}{\overline{\partial X_{m}}} \frac{1}{V} \sum \bar{\rho}_{m} \bar{\xi}_{k} \Delta V+ \\
+\frac{1}{V} \sum \varepsilon_{i l k} w_{l}\left(\bar{\xi}_{m}, t\right) \bar{\xi}_{k} \rho \Delta V+\frac{1}{V} \sum \varepsilon_{i l k}\left(\frac{\partial U_{l}}{\partial X_{m}}+\frac{\partial w_{l}}{\partial \bar{\xi}_{m}}\right) \int_{\Delta V} \rho \zeta_{m} \zeta_{k} d V \tag{2.11}
\end{gather*}
$$

We shall limit our attention to the case where $\Delta \gg d$, where the sums in (2.11) can be replaced by integrals, and where the radius vectors $\bar{\xi}_{m}$ vary continuously

$$
\begin{align*}
&\left(d V=d \bar{\xi}_{1} d \bar{\xi}_{2} d \bar{\xi}_{3}\right) \\
&\left\langle\varepsilon_{i l k} \rho u_{l} \xi_{k}\right\rangle=\varepsilon_{i l k} \frac{\partial U_{l}}{\partial \bar{X}_{m}}\left(\frac{1}{V} \int_{i} \bar{\rho} \bar{\xi}_{m} \bar{\xi}_{k} d V\right)+ \\
&+\frac{1}{V} \int_{V} \varepsilon_{i l k} u_{l}\left(\bar{\xi}_{m}, t\right) \bar{\xi}_{k} \rho V+M_{i} \tag{2.12}
\end{align*}
$$

The average internal moment M_{i} in this expression is a volume moment, i. e.

$$
\begin{gather*}
M_{i}=\frac{1}{V} \int_{V} \varepsilon_{i l k} \Phi_{l m} i_{m k} d V=\left\langle\varepsilon_{i l k} \Phi_{l m} i_{m k}\right\rangle \\
\Phi_{l m}=\left(\frac{\partial U_{l}}{\partial X_{m}}+\frac{\partial w_{l}}{\partial \bar{\xi}_{m}}\right), \quad i_{m k}=\frac{1}{\Delta V} \int_{\Delta V} \rho \zeta_{m} \zeta_{k} d V=O\left(d^{2}\right) \tag{2.13}
\end{gather*}
$$

and $i_{m k}$ is the moment of inertia of a fluid particle in the volume ΔV.
In contrast to (2.9), expression (212) contains the average kinetic moment of smallscale turbulent vortices in isolated form. We assume that the contribution of the pulsed velocity field is confined to the volume moment $M_{i}, 1$. e. to

$$
\frac{1}{V} \int_{\vec{V}} \varepsilon_{i l k} w_{l}\left(\bar{\xi}_{m}, t\right) \overline{\xi_{k}} \bar{\rho} d V=0
$$

If it is necessary to isolate the contributions made by vortices of various scales to the kinetic moment of the volume V, we can continue the procedure of conversion from (2.9) to (2.12) by assuming that the centers of the small vortices also experience rotations of some scale $d_{*}\left(\Delta \gg d_{*}>d\right)$.

We note that the isolation of volumes d in a continuous velocity field is somewhat arbitrary; however, a change in scale entails changes in the magnitudes of the associated velocity field gradients, so that the kinetic moment M_{i} remains unchanged. In [1] the corresponding moment of inertia was set equal to the moment of inertia of the fluid
volume V; this procedure did not reflect the volume character of the moment M_{i}.
The first term of (2.12) can be developed into

$$
e_{i l k} \frac{\partial U_{l}}{\partial X_{m}}\left(\frac{1}{V} \int_{V}-\overline{\xi_{m}} \bar{\xi}_{k} d V\right)=e_{i!k} \frac{\partial U_{l}}{\partial X_{m}} I_{m k}
$$

where $I_{m k}=I_{h m}$ is the specific moment of inertia of the fluid in the volume element V. This term is of the order of $U \Delta^{2} / L$ (where U is the magnitude of the average velocity). We assume that the fluid is sufficiently agitated to make M_{i} quite large (even, for $\Delta \gg d$) and thus to allow us to neglect the first term. Then, finally,

$$
\begin{equation*}
\left\langle\varepsilon_{i l_{k}} \rho u_{l} \xi_{k}\right\rangle \approx\left\langle\varepsilon_{i t k} \Phi_{l m} i_{m k}\right\rangle=M_{i} \tag{2.14}
\end{equation*}
$$

where $i_{m k}=i_{k m}$ is a symmetric tensor. If the volumes ΔV of the particles in pulsed rotation are symmetric, then $i_{m k}=1 / 2 i \delta_{m k}$ and we have

$$
\begin{equation*}
M_{k}=\left\langle i \Phi_{k}\right\rangle \tag{2.15}
\end{equation*}
$$

where $\Phi_{k}=\Omega_{k}+\Phi_{k}{ }^{*}$ is the total angular velocity of the internal rotations, Since $\langle\Phi\rangle=\Omega=1 / 2$ rot U by virtue of (1.7), it follows that Φ^{*} is its pulsed component. We can introduce the average values of the specific moment of inertia J and of the effective internal rotation velocity ω_{i} of the turbulent vortices,

$$
\begin{gather*}
M_{i}=\left\langle\left(J+i^{*}\right)\left(\Omega_{i}+\Phi_{i}^{*}\right)\right\rangle=J\left(\Omega_{i}+\omega_{i}\right) \tag{2.16}\\
J=\langle i\rangle, \omega_{i}=\left\langle i^{*} \Phi_{i^{*}}\right\rangle J^{-1}
\end{gather*}
$$

Here i^{*} is the pulsation of the specific moment of inertia, and we can introduce the pulsation ω_{i}^{*} of the proper angular velocity of the vortex,

$$
J \omega_{i}^{*}=i^{*} \Phi_{i}^{*}-J \omega_{i}
$$

Further, principle (2.6) enables us to transform the kinetic moment fluxes into

$$
\begin{equation*}
\left\langle\varepsilon_{i l k} \rho u_{i} \xi_{k} u_{j}\right\rangle_{j}=M_{i} U_{j}-\mu_{i j}+o\left(\frac{\Delta}{L}\right) \tag{2.17}
\end{equation*}
$$

which introduces the moment stresses

$$
\begin{equation*}
\mu_{i j}=-\left\langle i \Phi_{i} v_{j}\right\rangle_{j} \tag{2.18}
\end{equation*}
$$

into moment-of-momentum balance equation (2.5).
With the same degree of accuracy we have

$$
\begin{equation*}
\varepsilon_{i l k}\left\langle\rho u_{l} u_{k}\right\rangle_{k}=\varepsilon_{i l k}\left\langle\rho v_{t} v_{k}\right\rangle_{k}=-\varepsilon_{i l k} R_{i k} \tag{2.19}
\end{equation*}
$$

Averaging of the viscous stresses $t_{k p}$ in the incompressible case reduces to the trans-

$$
\begin{aligned}
& \text { formation } \\
& \qquad \frac{1}{V} \int_{B} t_{k n} d S=\frac{\partial\left\langle t_{k p}\right\rangle_{p}}{\partial X_{p}}=\frac{\partial}{\partial X_{p}}\left\langle-p \delta_{k p}+v \rho\left(\frac{\partial u_{k}}{\partial \xi_{p}}+\frac{\partial u_{p}}{\partial \xi_{p}}\right)\right\rangle_{p}= \\
& =\frac{\partial}{\partial X_{p}}\left\{-p \delta_{k p}+v p\left(\frac{\partial U_{k}}{\partial X_{p}}+\frac{\partial U_{p}}{\partial X_{k}}\right)+v \rho\left\langle\left(\frac{\partial v_{k}}{\partial \xi_{p}}+\frac{\partial v_{p}}{\partial \xi_{k}}\right)\right\rangle_{p}\right\}, \quad P=\langle p\rangle_{p}
\end{aligned}
$$

by virtue of (1.4), (1.7). Neglecting the effect of the pulsed velocity field on the average viscous stresses, we obtain

$$
\begin{align*}
& \text { es, we obtain } \tag{2.20}\\
& T_{k p}=\left\langle t_{k p}\right\rangle_{p}=-P \delta_{k p}+v \rho\left(\frac{\partial U_{k}}{\partial X_{p}}+\frac{\partial U_{p}}{\partial X_{k}}\right)
\end{align*}
$$

We note that the presence of pulsed velocities can affect the appearance of the antisymmetric component $\varepsilon_{i l k} T_{l k}$ (see (2.5)). However, we shall not consider this effect here.

We shall also neglect the moment of the viscous stresses $\left\langle\varepsilon_{i} i_{k} t_{l j} \xi_{k}\right\rangle_{j}$ acting at the faces of the volume V.
3. The final system of equations of nonsymmetric mechanics of turbulent flow of an incompressible fluid is of the form

$$
\begin{gather*}
\frac{\partial U_{j}}{\partial X_{j}}=0, \quad \rho\left(\frac{\partial U_{i}}{\partial t}+\frac{\partial U U_{i} U_{j}}{\partial X_{j}}\right)=-\frac{\partial P}{\partial X_{i}}+\frac{\partial R_{i j}}{\partial X_{j}} \tag{3.1}\\
\frac{\partial M_{i}}{\partial t}+\frac{\partial M_{i} U_{j}}{\partial X_{j}}=\frac{\partial \mu_{i j}}{\partial X_{j}}+\varepsilon_{i l k} R_{l k}
\end{gather*}
$$

The dynamic variables which appear in the balance equations of the momentum and internal moment of momentum must be related to the kinematic variables U_{i}, ω_{i} by certain equations which are specific to nonsymmetric hydromechanics in the case under consideration [7]. Following Boussinesq, we assume that the scalar coefficients in the defining relations are functions of the average microstructural parameters of the agitated fluid. The defining relations in this case are

$$
\begin{gather*}
\frac{1}{2}\left(R_{i j}+R_{j i}\right)=\mathrm{e}\left(\frac{\partial U_{i}}{\partial X_{j}}+\frac{\partial U_{j}}{\partial Y_{i}}\right) \\
\frac{1}{2}\left(\Lambda_{i j}-R_{j i}\right)=-2 \gamma \varepsilon_{i j k} \omega_{k}, \quad \gamma>0 \\
\mu_{i j}=\left(2 \alpha \delta_{i j} \delta_{k m}+2 \beta \delta_{i m} \delta_{j k}+2 \eta \delta_{i k} \delta_{j m}\right) \frac{\partial\left(\Omega_{k}+\omega_{k}\right)}{\partial X_{m}} \tag{3.2}
\end{gather*}
$$

Here $\delta_{i j}$ is a unit tensor, ε is the coefficient of turbulent shear viscosity, γ is the coefficient of turbulent rotational viscosity, and α, β, η are the coefficients of turbulent gradientially vortical viscosity (our terminology differs from that of [7]). Determination of the transfer coefficients $\varepsilon, \gamma, \alpha, \beta, \eta$ requires us to introduce hypotheses on mixing kinetics in turbulent flow. One way to do this is to use the ideas of Taylor and Prandtl [8,9] on the existence of a characteristic displacement length analogous to the free path length in the kinetic theory of gases.

We shall carry out the appropriate analysis for a plane free turbulent flow, namely for the steady plane flow characterized by the conditions

$$
\begin{gather*}
U_{1}=U_{1}\left(X_{1}, X_{3}\right), U_{2}=U_{2}\left(X_{1}, X_{2}\right), U_{3}=0 \\
\Omega_{1}=\Omega_{2}=0, \Omega_{8}=1 / 9\left(\partial U_{2} / \partial X_{1}-\partial U_{1} / \partial X_{2}\right)=\Omega \tag{3.3}
\end{gather*}
$$

In addition we shall assume that the velocity pulses have an average orientation such that

$$
\begin{equation*}
\omega_{1}=\omega_{2}=0, \quad \omega_{3}=\omega\left(X_{1}, X_{2}\right) \tag{3.4}
\end{equation*}
$$

In his monograph [10] Schlichting notes that "vortices with axes parallel to the direction of flow predominate in flows along a wall; vortices with axes perpendicular to the direction of principal flow and to the direction of the velocity gradient predominate in free turbulence". In view of this we assume that conditions (3.3) together with (3.4) correspond to freely turbulent flows.

In flows along a plane wall we have $\omega_{1} \neq 0, \omega_{2}=\omega_{3}=0$, and the equations of momentum and moment of momentum become separable.

System (3.1), (3.2) then assumes the form

$$
\begin{gather*}
\frac{\partial U_{1}}{\partial X_{1}}+\frac{\partial U_{2}}{\partial X_{2}}=0 \\
\rho\left(U_{1} \frac{\partial}{\partial X_{1}}+U_{2} \frac{\partial}{\partial X_{2}}\right) U_{i}=-\frac{\partial P}{\partial X_{i}}+\frac{\partial R_{i 1}}{\partial X_{1}}+\frac{\partial R_{i 2}}{\partial X_{2}} \\
\left(U_{1} \frac{\partial}{\partial X_{1}}+U_{2} \frac{\partial}{\partial X_{2}} j[J(\Omega+\omega)]=\frac{\partial \mu_{31}}{\partial X_{1}}+\frac{\partial \mu_{12}}{\partial X_{2}}+R_{12}-R_{21}\right. \tag{3.5}\\
R_{12}+R_{21}=2 \varepsilon\left(\frac{\partial U_{1}}{\partial X_{2}}+\frac{\partial U_{2}}{\partial X_{1}}\right), \quad R_{11}=-R_{22}=\varepsilon \frac{\partial U_{1}}{\partial X_{1}} \\
R_{12}-R_{21}=-4 \gamma \omega \\
\mu_{11}=\mu_{22}=\mu_{33}=\mu_{12}=\mu_{21}=0, \quad \mu_{31}=2 \eta \frac{\partial(\Omega+\omega)}{\partial X_{1}}, \quad \mu_{32}=2 \eta \frac{\partial(\Omega+\omega)}{\partial X_{2}}
\end{gather*}
$$

We shall also consider flows for which the velocity components can be expressed as

$$
\begin{gathered}
U_{1}=U_{\infty}-U, \quad U_{2}=W \\
U_{\infty} / U \geqslant 1, \quad W / U \approx L_{2} / L_{1} \gtrless 1
\end{gathered}
$$

where $U_{\infty}=$ const and L_{1}, L_{2} are the flow scales along the axes X_{1}, X_{2}. The estimates associated with the boundary layer approximations [10] then enable us to simplify system (3,5) considerably.

$$
\begin{align*}
&-U_{\infty} \frac{\partial U}{\partial X_{1}}=\frac{\partial}{\partial X_{2}}\left(-\varepsilon_{0} \frac{\partial U}{\partial X_{2}}-2{\Upsilon_{0} \omega}(\Omega+\omega)\right. \tag{3.6}\\
&=-4 \gamma_{0} \omega+\frac{\partial}{\partial X_{2}} 2 \eta_{0} \frac{\partial}{\partial X_{2}}(\Omega+\omega) \\
& U_{\infty} \frac{\partial}{\partial X_{1}} J(\Omega+\omega
\end{align*}
$$

where $\varepsilon_{0}=\varepsilon \rho^{-1}, \gamma_{0}=\gamma \rho^{-1}, \eta_{0}=\eta \rho^{-1}$ are the corresponding "kinematic" turbulent viscosities and $\Omega=1 / 2 \partial U / \partial X_{2}$.
4. Now let us formulate the hypotheses concerning the transfer coefficients $\varepsilon, \boldsymbol{\gamma}, \boldsymbol{\eta}$ and the moment of inertia J in a turbulent flow. To this end let us consider the expressions for the Reynolds stress components and for the moment stress in terms of the pulsations,

$$
\begin{equation*}
r_{19}=-\rho\left\langle v_{1} v_{2}\right\rangle_{2}, \quad \mu_{39}=-\rho\left\langle i \Phi v_{2}\right\rangle_{2}, \quad J=\langle i\rangle \tag{4.1}
\end{equation*}
$$

since $\Phi_{1}=\Phi_{2}=0, \Phi=\Phi_{\mathbf{z}}$ in the case under consideration.
We shall estimate quantities (4.1) on the basis of some idealized picture of motion of an "average" fluid microelement in turbulent flow (i.e. by computing its average pulsations). The translational velocity pulses v_{1}, v_{2} will be estimated from the difference between the average velocities U in neighboring flow layers lying the small distance l away from each other. Such an estimate $[8,9]$ is due to the possibility of isolating the average displacement path l during whose traversal the momentum of a fluid microelement is conserved [9]. In traveling the distance between the indicated layers the migrating microelement generates velocity pulses because its velocity differs from the velocity of the aborigine particles. Since $U \gg W$, the estimates are carried out with respect to the component U and under the assumption of an isotropic distribution of the absolute pulsations of the translational velocity $\left|v_{1}\right| \sim\left|v_{2}\right|$.

We also assume in this case that the momentum transfer due to the difference between the average translational velocitics in the layers $X_{2}=$ const, $X_{2}+l=$ const separated by the "free path" length l also yields equal estimates of the magnitudes of the pulsations v_{1} and v_{2}. Thus, fluid microelements pass through the boundary $X_{2}=$ const of the layer, and the aforementioned difference Δ_{U} between the momenta of the arriving and departing particles is given by

$$
\begin{gather*}
\Delta_{U}\left(\rho v_{1}\right)=\rho U_{1}\left(X_{2}+l\right)-\rho U_{1}\left(X_{2}\right)=\rho l \frac{\partial U_{1}}{\partial X_{2}} \tag{4.2}\\
\left|\Delta_{U} v_{2}\right| \sim\left|\Delta_{U} v_{1}\right| \sim l\left|\frac{\partial U_{1}}{\partial X_{2}}\right|, \quad \rho=\mathrm{const}, \quad l>0 \tag{4.3}
\end{gather*}
$$

However, the "average" micromotion is now associated with the existence of an "average" field of internal angular velocities ω. We assume accordingly that a migrant particle passes through a vortex sheet of intensity $l_{*} \omega$ in traversing the path l. The particles which pass the sheet in opposite directions then carry an additional momentum proportional to the sheet intensity,

$$
\begin{equation*}
\Delta_{\omega}\left(\rho v_{1}\right)=\rho l_{*} \omega-\left(-\rho l_{*} \omega\right)=2 \rho l_{*} \omega \tag{4.4}
\end{equation*}
$$

It is important to note that the presence of the vortex sheet affects only the tangential velocity components (the normal components remain unaltered). Hence,

$$
\begin{equation*}
\rho v_{1}=\rho l \frac{\partial U_{1}}{\partial X_{2}}+2 \rho l_{*} \omega, \quad\left|v_{2}\right|=l\left|\frac{\partial U_{1}}{\partial X_{2}}\right| \tag{4.5}
\end{equation*}
$$

Making use of estimates (4.5) and allowing for the choice [10] of the sign of v_{2} (the stress must be of the same sign as the transferred quantity), we infer from (4.1) that

$$
\begin{equation*}
r_{12}=\rho l\left|\frac{\partial U_{1}}{\partial X_{2}}\right|\left(l \frac{\partial U_{1}}{\partial X_{2}}+2 l_{*} \omega\right) \tag{4.6}
\end{equation*}
$$

Comparison with formulas (3.5) yields an estimate for the turbulent shear and vortical viscosities,

$$
\begin{equation*}
\varepsilon=\rho l^{2}\left|\frac{\partial U_{1}}{\partial X_{2}}\right|, \quad \gamma=\rho l l_{*}\left|\frac{\partial U_{1}}{\partial X_{2}}\right| \tag{4.7}
\end{equation*}
$$

We note that the estimate of the component $r_{21}=-\rho\left\langle v_{2} v_{1}\right\rangle_{1}$ differs from the derivation of the expression for r_{12} in the following way. We consider the layer $X_{1}=$ const. The particle migrating through this layer is characterized by an additional increment (equal to $2 l_{*} \omega$) in the tangential velocity component (namely v_{2}). It is important to recognize, however, that the sign of the increment is negative (the traversal of the field by the migrant particle is now in a direction orthogonal to the previous one), i.e. we have

$$
\begin{gather*}
\left|v_{1}\right|=l\left|\frac{\partial U_{1}}{\partial X_{2}}\right|, \quad \rho v_{2}=\rho l \frac{\partial U_{1}}{\partial X_{2}}-2 \rho l_{*} \omega \tag{4,8}\\
r_{21}=\rho l\left|\frac{\partial U_{1}}{\partial X_{2}}\right|\left(l \frac{\partial U_{1}}{\partial X_{2}}-2 l_{*} \omega\right) \tag{1.9}
\end{gather*}
$$

Now let us estimate the moment of momentum transferred into the layer $X_{2}=$ const by a migrant particle "freely" traversing a path of length l.

We can now compute the pulsation of the transferred moment of momentum,

$$
\begin{gather*}
(i \Phi)^{*}=i \Phi-\langle i \Phi\rangle=\left(i^{*}+J\right)\left(\Phi^{*}+\Omega\right)-J(\Omega+\omega)= \\
=i^{*} \Phi^{*}-J \omega+J \Phi^{*}=J\left(\omega^{*}+\Phi^{*}\right) \tag{4.10}
\end{gather*}
$$

From this we can estimate the kinetic moment $(i \Phi)^{*}$ carried by pulsed particle transfer through the surface (of thickness l) bounding the layer $\boldsymbol{X}_{\mathbf{2}}=$ const ,

$$
\begin{gather*}
\omega^{*}=\omega\left(X_{2}+l\right)-\omega\left(X_{2}\right)=l \frac{\partial \omega}{\partial X_{2}}, \quad \Phi^{*}=\Omega\left(X_{2}+l\right)-\Omega\left(X_{2}\right)=l \frac{\partial \Omega}{\partial X_{2}} \\
(i \Phi)^{*}=J l \frac{\partial}{\partial X_{2}}(\omega+\Omega) \tag{4.11}
\end{gather*}
$$

Applying the same criteria as above in choosing signs, we obtain the following expression for the moment stress:

$$
\begin{equation*}
\mu_{32}=J l^{2}\left|\frac{\partial U_{1}}{\partial X_{2}}\right| \frac{\partial}{\partial X_{2}}(\omega+\Omega) \tag{4.12}
\end{equation*}
$$

This gives us the following expression for the gradientally vortical viscosity:

$$
\begin{equation*}
\eta=\frac{1}{2} J l^{2}\left|\frac{\partial U}{\partial X_{2}}\right| \tag{4.13}
\end{equation*}
$$

We note that the considerations used in deriving estimate (4.13) can be traced back to Taylor's idea $[8,11]$ on pulsed vorticity transfer.

To compute the specific moment of inertia J of the turbulent vortices we assume that the volume V of the agitated fluid under consideration is filled with fluid particles of "average" radius d. The average specific moment of inertia J (equal to the ratio of the polar moment of inertia i on the "average" particle to its volume in the general case and to its area in the particular case of plane flow). We then have the estimate

$$
\begin{equation*}
J=1 / 2 d^{2} \tag{4.14}
\end{equation*}
$$

We see therefore that the microstructure of an agitated fluid is characterized by three parameters: the mixing length l, the diameter $2 d$ of a rotating microparticle, and the width l_{*} of the vortex sheet. It is apparently justifiable to assume that only one parameter of the "state" of the turbulent microstructure (e.g. $l_{*}=A l, d=B l$, where A and B are numerical coefficients) can be independent.

Estimation of the numerical coefficients A and B requires either experimental data or hypothetical refinements of the picture of average micromotion (e.g. the assumption that the mixing length is equal to the microparticle diameter, $l=2 d$, so that $A=1$).
5. The theory of turbulent flows contains an average equation for the vorticity [11] obtained by applying the $1 / 2$ rot and averaging operations (assuming that all averaging operations are equivalent) successively to the Navier-Stokes equations. For example, Townsend [12] writes out this equation for steady three-dimensional flow and notes that it has the same form as the conservation equation in the plane case where (for example) only the components $\Omega_{3}=\Omega, \Phi_{3}=\Phi$ differ from zero and where all the variables are functions of X_{1}, X_{2}.

$$
\begin{equation*}
\frac{\partial}{\partial X_{j}}\left(\Omega U_{j}\right)=-\frac{\partial}{\partial X_{j}} \bar{\Phi}_{j}+\nu \nabla^{2} \Omega, \quad i=1,2 \tag{5,1}
\end{equation*}
$$

The Taylor vorticity transfer equation (5.1) can also be obtained by applying the procedure of averaging over the volume V to the equation of vorticity diffusion Φ in the plane case where the latter is of divergent form. This requires us to make the substitution $\overline{\boldsymbol{\omega} v}{ }_{j}=\left\langle\Phi v_{j}\right\rangle_{j}$ in Eq. (5.1) Thus, construction of the vorticity balance for a volume V of agitated fluid does not reveal the existence of an average angular velocity of proper rotation of the turbulent vortices $\boldsymbol{\omega}$ (a kinematically independent quantity). simple averaging of the vorticity equation and its weighted averaging (i.e. averaging of the kinetic moment) yield differing results. In these cases where $\omega=0$ either the vortex balance equations (5.1) or the equation for the moment of momentum in system (2.5) must follow from the momentum balance equation.

It is important to note that in constructing semiempirical theories of turbulence Taylor [11] and later researchers regarded vorticity transfer equation (5.1) as a substitute for the momentum equation (while noting the need to introduce an independent kinetic hypothesis). Only Mattioli [13, 141 seems to have adopted a more general view; he approached the average momentum and moment-of-momentum equations as fundamental independent turbulent flow equations. Limiting himself to the hydraulic formulation for the analysis of turbulent flow in a circular pipe, Mattioli introduced additional characteristics of a turbulent fluid, namely the vorticity, the moment of inertia, and the moment of internal forces Γ. However, he assumed that the vorticity is kinematically related to the average velocity field, that the moment of inertia is a constant, and that the moment of internal forces Γ is proportional to the derivative of the vorticity. He then used the above condition of independence of the equations to eliminate the turbulent viscosity (to determine the displacement length l).

The novel elements in Mattioli's study did not receive the attention they deserved. Von Karmán [15], while taking note of Mattioli's "interesting theory of turbulent transfer", qualified his praise by adding that the Mattioli forces were "not readily comprehensible"; Mattioli's papers are not even entered in the bibliography appended to the encyclopedic monograph on the theory of turbulence by authors of [16].

BIBLIOGRAPHY

1. Nikolaevskii, V. N., Nonsymmetric mechanics of continua and the averaged description of turbulent flows. Dokl. Akad. Nauk SSSR Vol. 184, N86, 1969.
2. Dahler.J.S. and Scriven, L.E., Theory of structured continua, 1. General consideration of angular momentum and polarization. Proc. Roy. Soc. Ser. A, Vol. 275, N¹363, 1963.
3. Nikolaevskii, V. N., Transfer phenomena in fluid-saturated porous media. In: Irreversible Aspects of Continuum mechanics and Transfer of Physical Characteristics in Moving Fluids. Symp. (Vienna, 1966). Springer, ViennaNew York, 1968.
4. Eringen, A. C. . Mechanics of micromorphic continua. In: Mechanics of Generalized Continua. Proc. IUTAM-Sympos. on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. (Freudenstadt - Stuttgart, 1967). Springer, Berlin, 1968.
5. Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. , London, Vol. 186, 1894.
6. Buevich, Iu. A., On the diffusion of suspended particles in an isotropically turbulent field. Izv. Akad. Nauk SSSR, Mekh. Zhidkostei i Gazov, №5,1968.
7. Aero, E. L., Bulygin, A. N. and Kuvshinskii, E. V., Asymmetric hydromechanics. PMM Vol. 29, N*2, 1965.
8. Taylor, G.I. , Eddy motion in the atmosphere. Phil. Trans. Roy. Soc., London, Ser. A, Vol. 215, 1915.
9. Prandtl, L., Führer durch die Strömungslehre. Braunschweig, Vieweg, 1949.
10. Schlichting, H., Grenzschicht-Theorie. Karlsruhe, Braun, 1951.
11. Taylor, G.I. . The transport of vorticity and heat through fluids in turbulent motion. Proc. Roy. Soc.. Ser. A, Vol. 135, N®828, 1932.
12. Townsend, A. A. . The structure of Turbulent Shear Flow. Cambridge Univer sity Press, 1956.
13. Mattioli, G. D. . Sur la théorie de la turbulence dans les canaux. Compt. Rend. Vol.196, N88, 1933.
14. Mattioli, G. D. , Teoria della turbolenza. Rend. Accad. Naz. dei Lincei Vol. 17, № $13,1933$.
15. Kármán, Th., von, Some aspects of the theory of turbulent motion. Proc. Int. Congress Appl. Mech. (Cambridge), 1934.
16. Monin, A.S. and Iaglom, A. M., Statistical Hydromechanics. Mechanics of Turbulence, Parts 1 and 2. Moscow, Fizmatgiz, 1965, 1967.

[^0]: *) In contrast to the microstructure of solids, the microstructure under consideration here varies randomly both in space and in time.

