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Figure 3 gives the fields of flow past a combination of two spheres and a cylinder, at 
M,= 0.8 , for various values of the aspect ratio. Evolution of the flow is well illus- 

trated. On Fig. 3a the body is nearly spherical and a single supersonic zone appears in 
its vicinity. On increasing the length of the cylinder (Fig. 3b) the supersonic zone splits 
into two distinct zones, the second of which is situated downstream and contains a stronger 

shock than the first one, although the shock is still weaker than that appearing in Fig. 3a. 
Figure 3~ depicts the case when the cylindrical part of the body is still longer. Here two 
weak supersonic zones appear which are spaced even further apart. 

Figure 4 shows a flow past a combination of two spheres and a 10% cone, again at 

M, - 0.8. Here the supersonic zone is situated at the rear part of the body. The flow 

first accelerates on the front sphere reaching M =: 0.8 , then slows down to M zz 0.66 
and fIows past the cone with very slowly increasing velocity. 

Computations are also performed for a flow past a 10% spherically truncated cone with 

various ellipsoidal tailpieces. The distribution of parameters along the body up to some 

small distance from the point of attachment of the ellipsoid are practically identical 

with those of the case shown on Fig. 4. 
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In @.] we proposed renouncing the hypothesis of a symmetric tensor of Reynolds stresses 
and an agitated fluid and introducing an equation of conservation of the moment of 
momentum. This equation turns out to be nontrivial if, for example, the pulsed momen- 
tum transfer through a flow cross section depends on the orientation of the cross section 

in space, 
In the present paper we derive the equations of nonsymmetrical mechanics of turbu- 
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lent flows by converting from integral conservation laws (under the assumption that the 

micromotions are described by the Navier-Stokes equation). The phenomenological 
characteristics of the agitated fluid are introduced naturally as the average values (for 

the fluid mass element in question) of the corresponding microcharacteristics or their 
fluxes. The closing kinetic hypotheses on the internal kinetic moment (of the turbulent 
vortices) and pulsed momentum and moment-of-momentum transfer are formulated. 

1. The laws of conservation of mass, momentum, and moment of momentum for the 
Euler volume y bounded by the surface S are of the form p] 

+ i @in + eiikxjtkn) dS 

(1.1) 

(1.2) 

(4.3) 

Here p is the density of the fluid particle, tli is its velocity, Fi is the body force, tit 
is the stress tensor, x fzr) is the radius vector of the fluid particle, G, is the body mo- 

ment, cif are the moment str&ses, and eifk is the Levi-Civita alternating tensor. The 

subscript /a identifies components lying along the normal to the surface element ds. 
The interpretation of the dynamic quantities occurring in the integrands of (1. I.)- 

(1.3) depends on the chosen scales of the associated microvolumes dV, i. e. on the size 
of the fluid particles for which the quantities 9, u,, etc. are determined. If the motion 
of these particles is described by the Navier-Stokes equations and if the microvolumes 

dV are sufficiently small. then 

G j = 0, Cij = 0 

For simplicity we shall disregard the action of the body forces, assuming that I;* sm 0. 
If we base our analysis on the consideration of several large fluid particles, then the 

balance of moments of momenta reduces to the vorticity diffusion equation, and the 
quantities Cij , for example, are determined by molecular vorticity transfer (see fl]). 

let the volume V be filled with an agitated fluid, i.e. with fluid containing turbulent 

vortices which comprise a special (*) microstructure of a scale larger than the differen- 

tial volume dV= G?x&x&x~. We assume that the linear scale of the turbulent vortices 
is somewhat smaller than the characteristic length A of the volume V, and that the den- 
sity (p} and mass velocity Uj averaged over the volume %‘, namely 

*) In contrast to the micros~uct~e of solids, the microstructure under consideration here 
varies randomly both in space and in time. 
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as well as the average quantities defined below, are no longer random parameters. 

As usual, we refer the velocity U, to the center of mass of the fluid filling the volume 

V, i.e. to the point with the radius vector X (Xl, X,, X,) defined as follows: 

(p> xi = +- \ ps,dV, \ pF;$Iv = 0 U.6) 
+ G 

Here & = zi - Xi is the vector which defines the position of a point inside the 
volume V relative to the center of mass of the latter. 

Let the field ofaverage velocities Ui (X,, t) introduced above be such that the char- 
acteristic linear scale of the velocity gradient is of the same order as A. From now on 

we shall confine our attention to volumes V whose linear dimensions A are much smal- 

ler than L. 
In the present paper we deal with motions of an agitated fluid such that the micro- 

particle velocity I(i (%j, t) can be expressed as the sum of a regular and a nonregular 

component, 
Ui (Ej7 t, = 

( 
u, + 3 

j 
Ej + O (g)) + vi (%jv 0 G.7) 

where vi is the turbulent pulsation (the nonregular component) of the velocity, and L > 

> A 2 Ej 2 0. 
By (1, S)-(1.7) we have 

Further assumptions concerning the field &(%I~ t) are formulated below. 

2, Now let us suppose that our volume V is the macrovolume element 

V = AX,AX,AX,. 
Equations (1. l)-(1.3) then become : 

(2.1) 

P-2) 

(2.3) 

Here (Cpil)i denotes the result of averaging cpij over an area whose normal is the 
axis XI,, i.e. over one of the faces of the volume V. 

We have already used volume integration of equations valid for micromotions and 
introduced quantities averaged over volumes and surfaces for the analysis of the dyna- 
mics of heterogeneous media (for example. see our paper [3]). Eringen (43 investigated 
this approach in general and compared it with the micropolar elasticity and anisotropic 

fluid models. 
Taking the vector product of Eq. (2. ‘2) and X, we obtain the balance of the moment 

of translational momentum. 
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$ hk (PUj> xk) + $ (eiu (PWj)j Xk) - 

- eilk (Pwk)k = 6 hk <ttj)j xk) - ellk (bk9k P-4) 

Subtracting relation (2.4) from Eq. (2.3). we obtain the equation of conservation of 
the internal moment of momentum for the volume element, 

$ <%jkPUjW t & ceilkPu EkUj)j f 

+ eilk (f%Uk)k = + (eilktlikk)j + eilk (tlk>k (2.5) 

Let us replace the average characteristics and their fluxes in Eqs. (2.1).(2,2),(2.5) 

by the phenomenological parameters of turbulent flow, i.e. by velocity u,, the Reynolds 

stress tensor .Rti, the viscous stress tensor Tj,, the internal moment of inertia Jil, the 
internal rotational velocity of the turbulent vortices OJ, and the moment stress tensor 

tril* 
We begin with the assumption that the results of averaging the vector quantities over 

the volume V nnd over its faces are equivalent, i. e. that 

(P”i>j = (P”i> = (P> uiv (J%lkP~ltk)j = (eilkfwtk) (2.6) 

etc. This implies, among other things, the possibility of the transformation 

(pUiUj)j = (p) UiUj - Rij + 0 ($) (2.7) 

which introduces the Reynolds stresses 
Rif = - (PV, 2’j)j @.fJ) 

into momentum equation (2.2). 

It is important to note that the tensor II,, is generally nonsymmetric. The problem of 
the symmetry (or nonsymmetry) of the tensor Hij can be solved (as is usual in the me- 
chanics of contiuous media) by analyzing the moment-of-momentum equation. We note 
that Reynolds distinguished between the components Rij and ltji* in his original paper 

[5]. 
If we average the pulsation velocities vi and vr over time (as is done in measuring the 

microstructure of turbulent flows), the resultant tensor viuj is the correlation moment of 
the pulsed velocity field ; in general it does not coincide with Ri i. 

Statistical averaging (over the ensemble of possible realizations)of the Navier-Stokes 
equations yields balance relations for the average fluid motion in a volume element of 

the scale dxi (but not dXi). We note that the elements of the problem of statistical and 
volume averaging are presented in [S]. The form of the ergodic hypothesis (of the equi- 

valence of all averaging methods) which is usually employed excludes the investigation 
of nonsymmetric effects. 

Let us consider the average kinetic moment of an agitated fluid. We have 

(&ifkPUIEk) = $ \ eilkPu&kdV = 
G 

au, i 
= eilkaXm 7 Phntkdv -b t ( EijkPvjkkdV 

t 
(2.9) 

Further transformation require us to make additional assumptions about the pulsed 
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field ~j* We assume that the volume under consideration can be broken down into a 
set of small volumes AV with the characteristic scale 2d such that in each of them 

we have (2.10) 

where d > 6, > 0, z,,, = E, - 5, -I” are the coordinates of the center of mass of 
the small volume AV and wj = t+ (f;,) is the velocity of this center of mass, i. e. 

;i”ii 
s 

pvjdV = &j, 
A,Y 

c KmdV = 0, 
a’v 

A\ pdV=p 
A% 

This enables us to express integrals (2.9) as sums over the volumes AV , 

We shall limit our attention to the case where A > d , where the sums in (2.11) 
can be replaced by integrals, and where the radius vectors &vary continuously 

(dV = d~~d~~d~~~ 
(~~1~~1~~~ = eilk 

(2.12) 

The average internal moment Miin this expression is a volume moment, i. e. 

and i,, is the moment of inertia of a fluid particle in the volume AV. 
In contrast to (2.9), expression (2 12) contains the average kinetic moment of small- 

scale turbulent vortices in isolated form. We assume that the contribution of the pulsed 

velocity field is confined to the volume moment Mr, i.e. to 

If it is necessary to isolate the contributions made by vortices of various scales to the 
kinetic moment of the volume v, we can continue the procedure of conversion from 
(2.9) to (2.12) by assuming that the centers of the small vortices aiso experience rota- 
tions of some scale d, (A > d, > d). 

We note that the isolation of volumes d in a continuous velocity field is somewhat 
arbitrary ; however, a change in scale entails changes in the magnitudes of the associated 
velocity field gradients, so that the kinetic moment Mi remains unchanged. In 01 the 
corresponding moment of inertia was set equal to the moment of inertia of the fluid 
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volume V ; this procedure did not reflect the volume character of the moment Mt. 
The first term of (2.12) can be developed into 

where I,,,h = 1 ~,,,,is the specific moment of inertia of the fluid in the volume element 

v. This term is of the order of UAa / L (where u is the magnitude of the average 

velocity). We assume that the fluid is sufficiently agitated to make Mi quite large (even_ 
for A > d) and thus to allow us to neglect the first term. Then, finally, 

<emu&) .= (~i&+mimk) = M, (2.14) 

where imk = ikm is a symmetric tensor. If the volumes AV of the particles in pulsed 

rotation are symmetric, then i,,,~ = ‘1, ihrnR and we have 

Mk = (i@k) (2.15) 

where CD k=QA+@,II* is the total angular velocity of the internal rotations. Since 

(0) = 0 = ‘/got U by virtue of (1.7). it follows that a* is its pulsed component, 

We can introduce the average values of the specific moment of inertia J and of the 

effective internal rotation velocity a1 of the turbulent vortices, 

Mi = ((J + i*) K& + CD,*)> = J (52, + COG) (2.16) 

J = <i>, oi = (i’V$*) J-1 

Here i* is the pulsation of the specific moment of inertia, and we can introduce the 

pulsation We* of the proper angular velocity of the vortex, 

Jo,* = i?O,,* - Jo, 

Further, principle (2.6) enables us to transform the kinetic moment fluxes into 

(eilkPu&uj)j = Miuj - Pii + O ($) (2.17) 

which introduces the moment stresses 

Pil = - (iWj>j (2.18) 

into moment-of-momentum balance equation (2. 5). 
With the same degree of accuracy we have 

eilh (PUl%l)R = %lR <PVk)L = - eilk RI, (2.19) 

Averaging of the viscous stresses tk,, in the incompressible case reduces to the trans- 
formation 

by virtue of (1.4), (1.7). Neglecting the effect of the pulsed velocity field on the aver- 
age viscous stresses, we obtain 

T,, = (tkPjP = - Pakp + VP 
au, 3 
ax -1 a_y > 

(2.20) 
P k 

We note that the presence of pulsed velocities can affect the appearance of the anti- 
symmetric component eilk Tlk (see (2. 5)). However, we shall not consider this effect 
here. 
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We shall also neglect the moment of the viscous stresses (~~te ttj i;t)j acting at the 
faces of the volume V. 

5. The final system of equations of nonsymmetric mechanics of turbulent flow of an 
incompressible fluid is of the form 

a*+ - 50, 
aXj 

(3.2) 

The dynamic variables which appear in the balance equations of the momentum and 

internal moment of momentum must be related to the kinematic variables II,, Oi by 

certain equations which are specific to nonsymmetric hydromechanics in the case under 

consideration 171. Following Boussinesq. we assume that the scalar coefficients in the 
defining relations are functions of the average microstructural parameters of the agitated 

fluid. The defining relations in this case are 

(3.2) 

Were i$ is a unit tensor, E is the coefficient of turbulent shear viscosity, y is the 

coefficient of turbulent rotational viscosity, and a, @, q are the coefficients of turbu- 

lent gradientially vertical viscosity (our terminology differs from that of [7]). Determi- 

nation of the transfer coefficients e, 7, CL, fi, tl requires us to introduce hypotheses on 
mixing kinetics in turbulent flow. One way to do this is to use the ideas of Taylor and 

Prandtl [8, 91 on the existence of a characteristic displacement length analogous to the 
free path length in the kinetic theory of gases. 

We shall carry out the appropriate analysis for a plane free turbulent flow, namely for 
the steady plane flow characterized by the conditions 

u 1= 6 & x,1, us = u* (X,, &I, Ua = 0 

Q 1=Q. = 0, a, =-/,(au,/ax, --au, / i3X*)=Q (3.3) 

In addition we shall assume that the velocity pulses have an average orientation such 
that tot = 02 = 0, 03 = w (XI, -U (X4) 

In his monograph @.O] Schlichting notes that “vortices with axes parallel to the direc- 
tion of flow predominate in flows along a wall; vortices with axes perpendicular to the 
direction of principal flow and to the direction of the velocity gradient predominate in 
free turbulence”. In view of this we assume that conditions (3.3) together with (3.4) 

correspond to freely turbulent flows. 
in flows along a plane wall we have ti, # 0, @a = @a = 0, and the equations of 

momenturn and moment of momen~m become separable. 
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System (3.1). (3.2) then assumes the form 

-fax,= au, aut (-) 

dX1 

PCU 
m ais. “+u2&)u1=--g+&-$ 1 ax1 . 

( 1 A, + uz &j [J fp’-,- o)] = &+ $ +- R,, - R,, U- (3.5) 

R,,fR,,=2e($gfg$ R,, = - R,, = es 
1 

R,, - R,, = - 470 

We shall also consider flows for which the velocity components can be expressed as 

where U,,, = GOlISt and L,, L, are the flow scales along the axes X,, X,. The esti- 
mates associated with the boundary layer approximations DO] then enable us to simplify 
system (3.5) considerably, 

-u$ =&- (-q&- 2Tcw 
1 a ) 

(3.6) 
U ,~~(~+“)=-4~~0+~2tlo~(51+O) 

where e, = &p-l, y0 = yp-t, 7s = ?~p -r are the corresponding “kinematic” turbu- 

lent viscosities and Q = tj2 tjlJ / ax,. 

4, Now let us formulate the hypotheses concerning the transfer coefficients C? ‘y, 7 
and the moment of inertia J in a turbulent flow. To this end let us consider the expres- 

sions for the Reynolds stress components and for the moment stress in terms of the pulsa- 

tions, 
fl2 = -P (vp,),, psr = --P Wv2h J = (i> (4.1) 

since U$ = OS = 0, Q, = 0, in the case under consideration. 
We shall estimate quantities (4.1) on the basis of some idealized picture of motion 

of an “average” fluid microelement in turbulent flow (i. e. by computing its average 

pulsations). The translational velocity pulses ut, 2 v will be estimated from the differ- 
ence between the average velocities u in neighboring flow layers lying the small dis- 

tance 1 away from each other. Such an estimate [8. 91 is due to the possibility of isola- 
ting the average displacement path I during whose traversal the momentum of a fluid 
microelement is conserved 191. In traveling the distance between the indicated layers 
the migrating microelement generates velocity pulses because its velocity differs from 

the velocity of the aborigine particles. Since U> W, the estimates are carried out 
with respect to the component u and under the assumption of an isotropic distribution 
of the absolute pulsations of the translational velocity 1 u1 1 - 1 V, I. 
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We also assume in this case that the momentum transfer due to the difference between 
the average translational velocities in the layers X, = con&, X, + 1~ const 
separated by the “free path” length 1 also yields equal estimates of the magnitudes of 

the pulsations or and vs. Thus, fluid microelements pass through the boundary X, =const 
of the layer, and the aforementioned difference A-v between the momenta of the arriving 
and departing particles is given by 

(4.2) 

(4.3) 

However, the “average” micromotion is now associated with the existence of an “ave- 

rage” field of internal angular velocities o. We assume accordingly that a migrant par- 
ticle passes through a vortex sheet of intensity I,@ in traversing the path 1 . The par- 
ticles which pass the sheet in opposite directions then carry an additional momentum 

proportional to the sheet intensity, 

&, (pv,) = pl,o - (-pZ,o) = 2pl,o (4.4) 

It is important to note that the presence of the vortex sheet affects only the tangen- 

tial velocity components (the normal components remain unaltered). Hence, 

(4.5) 

Making use of estimates (4.5) and allowing for the choice DO] of the sign of V, (the 

stress must be of the same sign as the transferred quantity), we infer from (4.1) that 

(4.6) 

Comparison with formulas (3.5) yields an estimate for the turbulent shear and vertical 

viscosities, 
(4.7) 

We note that the estimate of the component rm = - P<u~n,)l differs from the deriva- 

tion of the expression for r12 in the following way. We consider the layer X1 = const. 
The particle migrating through this layer is characterized by an additional increment 

(equal to Z&o) in the tangential velocity component (namely pq). It is important to 
recognize, however, that the sign of the increment is negative (the traversal of the field 

by the migrant particle is now in a direction orthogonal to the previous one), i. e. we have 

(4.8) 

(‘1.9) 

Now let us estimate the moment of momentum transferred into the layer X2 = COW4 
by a migrant particle “freely” traversing a path of length 1. 

We can now compute the pulsation of the transferred moment of momentum, 
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(SD)+ = i@ - (SD,> = (i* + J) (O* + S-2) - J (i-2 + 0) = 
= i*cD* - Jo + JW = J (a+ + 0”‘) (4.10) 

From this we can estimate the kinetic moment (ia)* carried by pulsed particle trans- 
fer through the surface (of thickness I) bounding the layer X, = const , 

o*=O(Xl+z)-O(X~)=z& w=n(X,+z)-R(X,)=zgy 
(SD)* = Jl &(a + 62) (4.11) 

Applying the same criteria as above in choosing signs, we obtain the following expres- 

sion for the moment stress: 

This gives us the following expression for the gradientally vertical viscosity: 

T,=+JPI~I 

(4.12) 

(4.13) 

We note that the considerations used in deriving estimate (4.13) can be traced back 
to Taylor’s idea [8, 111 on pulsed vorticity transfer. 

To compute the specific moment of inertia J of the turbulent vortices we assume 

that the volume T’ of the agitated fluid under consideration is filled with fluid particles 

of “average” radius d. The average specific moment of inertia J (equal to the ratio 

of the polar moment of inertia i on the “average” particle to its volume in the general 

case and to its area in the particular case of plane flow). We then have the estimate 

J = ‘12 CP (4.14) 

We see therefore that the microstructure of an agitated fluid is characterized by three 

parameters : the mixing length I, the diameter 2d of a rotating microparticle, and the 

width I, of the vortex sheet. It is apparently justifiable to assume that only one para- 
meter of the “state” of the turbulent microstructure (e. g. 2, = A 1, d = Bl, where 

A and B are numerical coefficients) can be independent. 

Estimation of the numerical coefficients A and B requires either experimental data 
or hypothetical refinements of the picture of average micromotion (e. g. the assumption 
that the mixing length is equal to the microparticle diameter, 1 = 2d,so that A = 1). 

6. The theory of turbulent flows contains an average equation for the vorticity 1111 

obtained by applying the r/z rot and averaging operations (assuming that all averaging 
operations are equivalent) successively to the Navier-Stokes equations. For example, 
Townsend p2] writes out this equation for steady three-dimensional flow and notes that 
it has the same form as the conservation equation in the plane case where (for example) 

only the components Q, = R, C& = @ differ from zero and where all the variables are 
functions of Xi, XI , 
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&Wj)=-& 
j 

cDuj + VV*62, i=i, 2 (-5. 1) 

The Taylor vorticity transfer equation (5.1) can also be obtained by applying the pro- 
cedure of averaging over the volume V to the equation of vorticity diffusion @ in the 

plane case where the latter is of divergent form. This requires us to make the substitu- 
tion o’;, = C@uj )j in Eq. (5.1) Thus, construction of the vorticity balance for a 
volume V of agitated fluid does not reveal the existence of an average angular velocity 

of proper rotation of the turbulent vortices o (a kinematically independent quantity) . 
Simple averaging of the vorticity equation and its weighted averaging (i. e. averaging 
of the kinetic moment) yield differing results. In these cases where o = 0 either the 

vortex balance equations (5.1) or the equation for the moment of momentum in system 
(2.5) must follow from the momentum balance equation. 

It is important to note that in constructing semiempirical theories of turbulence Tay- 

lor fll] and later researchers regarded vorticity transfer equation (5.1) as a substitute 
for the momentum equation (while noting the need to introduce an independent kinetic 

hypothesis). Only Mattioli p3, 141 seems to have adopted a more general view ; he 

approached the average momentum and moment-of-momentum equations as fundamen- 

tal independent turbulent flow equations. Limiting himself to the hydraulic formulation 
for the analysis of turbulent flow in a circular pipe, Mattioli introduced additional char- 
acteristics of a turbulent fluid, namely the vorticity, the moment of inertia, and the 

moment of internal forces 1. However, he assumed that the vorticity is kinematically 
related to the average velocity field, that the moment of inertia is a constant, and that 

the moment of internal forces 1 is proportional to the derivative of the vorticity. He 
then used the above condition of independence of the equations to eliminate the turbu- 

lent viscosity (to determine the displacement length 1). 

The novel elements in Mattioli’s study did not receive the attention they deserved. 
Von Karmin PS], while taking note of Mattioli’s “interesting theory of turbulent trans- 

fer”, qualified his praise by adding that the Mattioli forces were “not readily compre- 

hensible” ; Mattioli’s papers are not even entered in the bibliography appended to the 

encyclopedic monograph on the theory of turbulence by authors of p6]. 
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